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Società Italiana di Fisica
Springer-Verlag 1999

Order by thermal disorder in 2D planar rotator model
with dipolar interactions

E. Rastellia, A. Carbognani, S. Regina, and A. Tassi
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Abstract. The energy of a square planar rotator model of spins interacting via dipolar forces is minimized
by infinite inequivalent configurations corresponding to spins arranged on four interpenetrating sublattices
making angles α, −α, π+α, π−α with a reference axis, α being arbitrary. This infinite degeneracy of the
ground state is accidental in nature and one expects that it is removed by thermal fluctuations in agreement
with Monte Carlo simulation. Indeed we find that the elementary excitation energies which depend on α
lead to a free energy which is a function of α with minima at α = 0 and α = π/2 corresponding to columnar
configurations. This selection of columnar configurations out of the infinite ground state manifold is an
example of order by thermal disorder.

PACS. 75.10.Hk Classical spin models – 75.30.Ds Spin waves

1 Introduction

Dipolar interaction is a spin-spin long range coupling that
raises interesting theoretical questions [1,2] and becomes
crucial to explain the behaviour of magnetic systems with
small exchange interaction [3,4]. Minimum energy spin
configurations, elementary excitation energy and thermal
behaviour of spin systems with long range interaction are
interesting theoretical arguments that can be investigated
by low temperature expansions and Monte Carlo (MC)
simulations. Possible ferromagnetic order supported by
dipolar interaction in cubic lattices was studied a long
time ago [1]. Several types of columnar spin configura-
tions were found to minimize the energy of orthorhombic
and tetragonal lattices [5]. More recently the interest was
turned to 1D [4] and 2D [6] spin models in order to inves-
tigate the effect of dipolar interactions on long range order
(LRO) occurring at low temperature, and to explain some
experimental data from elastic and inelastic neutron scat-
tering measurements performed on actual systems. Dif-
ferent kinds of anisotropy and exchange couplings have
been introduced to fit experimental data on CsNiF3, a
hexagonal quasi 1D ferromagnet [4] of the ABX3 struc-
ture, and on ErBa2Cu3O7, an orthorhombic quasi 2D an-
tiferromagnet [6] of the RBa2Cu3O7 family, where R is a
rare earth ion.

Here we focus on the basic properties of the two-
component spin model (planar rotator model) on a square
(SQ) lattice with dipolar interactions. In particular, we
investigate the existence of a low temperature ordered
phase. It is well known that LRO is ruled out in a 2D
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spin model with continuous symmetry when the spin-spin
interaction is short ranged [7]. On the other hand, long
range interactions may or may not support LRO in the 2D
planar model. For instance, spin-spin interactions decay-
ing as 1/r3, where r is the spin-spin distance, are believed
to support LRO when the interaction is ferromagnetic [8],
whereas no LRO is expected when the interaction is anti-
ferromagnetic on the basis of MC simulation [9].

The question is still open when the spins are coupled by
dipolar interactions. In this case the ground state spin con-
figuration [10] was looked for assuming a four-sublattice
configuration. An infinite degeneracy was obtained since
any configuration where the spins along a diagonal of the
unit cell are antiparallel has the same energy independent
of the angle α that the spins make with the x axis cho-
sen parallel to a row of nearest neighbour (NN) spins. MC
simulation [11] suggests this degeneracy to be removed at
finite temperature where a columnar spin configuration
with rows (columns) of parallel spins pointing along the x
(y) axis alternate along the y (x) axis. So far no theoret-
ical support to this expectation has been provided. Here
we evaluate the elementary excitation energy of the planar
rotator model and we take thermal fluctuations into ac-
count to investigate the mechanism selecting a columnar
spin configuration. We find that the minimum of the free
energy is obtained for columnar spin configurations (α = 0
or α = π/2) in agreement with MC expectations [11].
This selection is caused by the fact that the elementary
excitation energy does depend on α: this is an additional
example of order by thermal disorder [12–14]. Indeed the
ground state degeneracy is accidental in nature because
it is not related to symmetry properties of the Hamil-
tonian so that one expects that the infinite degeneracy
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Fig. 1. Four sublattice configuration assumed to minimize the
ground state energy.

of the ground state does not survive thermal fluctuations.
We find that the selection of columnar configurations is
also confirmed by MC simulation on large enough samples.

2 Minimum energy configuration

The Hamiltonian of the planar rotator model of two com-
ponent spins interacting via dipolar interactions reads

H = −
1

2

µ2

a3

∑
i,r
r6=0

∑
ρσ

fρσ(r)Sρi S
σ
i+r (2.1)

where

fρσ(r) =
a3

r3

(
3
rρrσ

r2
− δρ,σ

)
. (2.2)

In equation (2.1) µ is the magnetic moment; ρ, σ = x, y
label the two spin components; i labels the N sites of a
square (SQ) lattice; r = m1aûx + m2aûy, with m1,m2

integers, is the generic lattice vector; a is the lattice
constant. In order to investigate the ground state spin con-
figuration we start with a four-sublattice model in agree-
ment with the proposal of reference [10]. The four two-
component spins of the unit cell are

Sai = S cos(α+ ψai )ûx + S sin(α+ ψai )ûy (2.3)

Sbi = S cos(β + ψbi )ûx + S sin(β + ψbi )ûy (2.4)

Sci = S cos(γ + ψci )ûx + S sin(γ + ψci )ûy (2.5)

Sdi = S cos(δ + ψdi )ûx + S sin(δ + ψdi )ûy . (2.6)

As shown in Figure 1 α, β, γ, δ are the angles the spins
of the unit cell make with the x axis in the ground
state and ψsi (s = a, b, c, d) are the angular displacements
from the ground state configuration. At low temperature
the angular displacements are small and one can expand
(2.3-2.6) in powers of them. We introduce this expansion

in Hamiltonian (2.1) and retain all terms up to second or-
der in ψsi . Finally we write the angular displacements in
terms of their Fourier transforms

ψsi =

√
4

N

∑
q

ψsqeiq·ri (2.7)

and we obtain the harmonic approximation of Hamilto-
nian (2.1)

H2 = E0 +
1

2

µ2S2

a3

∑
ss′

∑
q

ψsqA
ss′

q ψs
′

−q (2.8)

where

E0 = −
1

4

µ2S2N

a3

{
2Dxx(0) +Wxx

1x (0)(cosα cosβ

+ cos γ cos δ + sinα sin δ + sinβ sin γ)

+Wxx
1y (0)(cosα cos δ + cosβ cos γ + sinα sinβ

+ sin γ sin δ) +Wxx
2 (0)(cosα cos γ + cosβ cos δ

+ sinα sin γ + sinβ sin δ)
}
.

(2.9)

The diagonal coefficients Assq are given by

Aaaq = Dxx(0)−Dxx(q) sin2 α−Dyy(q) cos2 α

+Dxy(q) sin 2α+Wxx
1x (0)(cosα cosβ + sinα sin δ)

+Wxx
1y (0)(cosα cos δ + sinα sinβ)

+Wxx
2 (0) cos(α− γ),

(2.10)

Abbq , Accq , Addq are obtained from Aaaq by the change α↔ β
and δ ↔ γ, α ↔ γ and β ↔ δ, α ↔ δ and β ↔ γ,
respectively.

The off-diagonal coefficients Ass
′

q = As
′s

q are given by

Aabq = −Wxx
1x (q) sinα sinβ

−W yy
1x (q) cosα cosβ +Wxy

1x (q) sin(α+ β),
(2.11)

Aacq = −Wxx
2 (q) sinα sin γ

−W yy
2 (q) cosα cos γ +Wxy

2 (q) sin(α+ γ),
(2.12)

Aadq = −Wxx
1y (q) sinα sin δ

−W yy
1y (q) cosα cos δ +Wxy

1y (q) sin(α+ δ), (2.13)

Abcq is obtained from Aadq by the change α→ β and δ → γ,

Abdq from Aacq by the change α→ β and γ → δ, Acdq from

Aabq by the change α → γ and β → δ. The dipolar sums



E. Rastelli et al.: Order by disorder 643

appearing in equations (2.9-2.13) are given by

Dρσ(q) =
∑
R6=0

fρσ(R) cos(q ·R) (2.14)

W ρσ
1x (q) =

∑
R

fρσ(R + aûx) cos[q · (R + aûx)] (2.15)

W ρσ
1y (q) =

∑
R

fρσ(R + aûy) cos[q · (R + aûy)] (2.16)

W ρσ
2 (q) =

∑
R

fρσ(R+aûx+aûy) cos[q · (R+aûx+aûy)]

(2.17)

where R = 2m1aûx + 2m2aûy is the generic vector of a
SQ lattice with a four-spin unit cell. Minimization of E0

(Eq. (2.9)) with respect to α, β, γ, δ, gives the ground
state configuration of the model. We obtain

∂E0

∂α
= −

1

4

µ2S2N

a3

[
Wxx

1x (0)(− sinα cosβ + cosα sin δ)

+Wxx
1y (0)(− sinα cos δ + cosα sinβ)

+Wxx
2 (0)(− sinα cos γ + cosα sin γ)

]
= 0.

(2.18)

The remaining three minimum equations are obtained in
the following way: ∂E0

∂β
is obtained by equation (2.18) by

the change α ↔ β, and γ ↔ δ; ∂E0

∂γ is obtained by equa-

tion (2.18) by the change α ↔ γ, and β ↔ δ; ∂E0

∂δ
is

obtained by equation (2.18) by the change α ↔ δ, and
β ↔ γ. The solution is

α = arbitrary, β = −α, γ = π + α, δ = π − α.
(2.19)

Solution (2.19) leads to the following ground state energy

E0 = −
1

2

µ2S2N

a3

[
Dxx(0) +Wxx

1x (0) +Wxx
1y (0)−Wxx

2 (0)
]

= −2.5495
µ2S2N

a3

(2.20)

where the final result is obtained by the numerical evalua-
tion of dipolar sums (2.14-2.17). Note that E0 is indepen-
dent of α. This means infinite degeneracy of the ground
state. The stability of the above result, based on the as-
sumption of a four-sublattice spin configuration, will be
tested in the next section.

3 Elementary excitations and free energy

In order to test the stability of the assumed ground state
configuration we evaluate the elementary excitation spec-
tra. To this aim we diagonalize Hamiltonian (2.8) and we
obtain

H2 = E0 +
1

2

µ2S2

a3

4∑
`=1

∑
q

λ`qφ
`
qφ

`
−q (3.1)

where the eigenvalues λ`q of Hamiltonian (2.8) are

λ1,2
q = Dxx(0) +Wxx

1x (0)−Wxx
1y (0)−Wxx

2 (0)

−
[
Dyy(q) +W yy

2 (q)
]

cos2 α

−
[
Dxx(q) +Wxx

2 (q)
]

sin2 α

∓
{[
Dxy(q) +Wxy

2 (q)
]2

sin2(2α)

+
[
(Wxx

1x (q) +Wxx
1y (q)) sin2 α

− (W yy
1y (q) +W yy

1x (q)) cos2 α
]2}1/2

(3.2)

λ3,4
q = Dxx(0) +Wxx

1x (0)−Wxx
1y (0)

−Wxx
2 (0)−

[
Dyy(q) −W yy

2 (q)
]

cos2 α

−
[
Dxx(q) −Wxx

2 (q)
]

sin2 α

∓
{[
Dxy(q)−Wxy

2 (q)
]2

sin2(2α)

+
[
(Wxx

1x (q) −Wxx
1y (q)) sin2 α

+ (W yy
1y (q)−W yy

1x (q)) cos2 α
]2}1/2

. (3.3)

As one can see from (3.2-3.3) the elementary excitation
spectra λ`q are periodic functions of α. Indeed λ`q(α) =

λ`q(α+ π). Configurations with α = 0 and α = π/2 corre-
spond to columnar configurations. Indeed the choice α = 0
(α = π/2) corresponds to alternating rows (columns) of
parallel spins pointing along the x (y) axis. The elemen-
tary excitation spectra for selected directions in the recip-
rocal space are given in Figures 2 and 3 for α = 0 and
α = π/4, respectively.

As one can see the eigenvalues λ`q are well defined
for any q so that the four sublattice spin configura-
tion we have assumed to describe the ground state is
stable against spontaneous fluctuations. The spectra for
α = π/2 are the same as for α = 0 provided that (1, 0)
and (0, 1) directions are exchanged. At q = 0 one has
Dxx(0) = Dyy(0) = 0.5642, Wxx

1x (0) = W yy
1y (0) = 4.2429,

Wxx
2 (0) = W yy

2 (0) = 1.0320, Wxx
1y (0) = W yy

1x (0) =

−1.3237, Dxy(0) = Wxy
2 (0) = 0, and the elementary exci-

tations (3.2-3.3) are

λ1,2
q=0 = 3.5026∓ 2.9192| cos(2α)|,

λ3
q=0 = 0, λ4

q=0 = 11.1332. (3.4)

Note that λ3
q=0 = 0 for any α. This soft mode corresponds

to fluctuations driving a columnar spin configuration into
a generic configuration of the infinitely degenerate mani-
fold.

The relationship between ψsq defined in equation (2.7)

and φ`q appearing in equation (3.1) is given by

ψsq =
4∑
`=1

u`sφ
`
q (3.5)

where u`s are the eigenvectors belonging to the eigenvalues
λ`q given in equations (3.2-3.3).
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Fig. 2. Elementary excitation energies along (1, 0), (0, 1), (1, 1) directions of the reciprocal lattice for α = 0.

Fig. 3. Elementary excitation energies along (1, 0), (0, 1), (1, 1) directions of the reciprocal lattice for α = π/4.
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Fig. 4. The thermal fluctuations contritution to the free energy
as function of the angle characterizing the infinite degeneracy
of the ground state. See equation (3.8).

The Helmholtz free energy in harmonic approxima-
tion is

F = E0 − kBT ln

∫
Dφ exp

{
−

µ2S2

2kBTa3

4∑
`=1

∑
q

λ`q|φ
`
q|

2
}

= E0 −
1

2
kBTN ln

( kBTa
3

2πµ2S2

)
+

1

2
kBTNf(α)

(3.6)

where

f(α) =
1

N

∑
q

4∑
`=1

lnλ`q. (3.7)

Equation (3.7) gives the α dependent contribution to the
free energy coming from thermal fluctuations. In Figure 4
we show the numerical evaluation of f(α) as function of
α. Note that f(α) = f(α+ π/2) as expected on the basis
of the symmetry properties of the eigenvalues λ`q. As one
can see the minima of f(α) occur at α = 0, α = π/2 so
that thermal fluctuations select columnar states out of the
manifold of the infinite degeneracy. Order is supported by
thermal disorder.

4 Monte Carlo simulation

In this section we present Monte Carlo (MC) simulation
using an approach which is an extension of the approach
introduced by reference [15] This approach is suitable to
take into account dipolar interactions because it avoids
truncation of the long range tail of the interaction. It
is based on a periodic arrangement of MC cells and it
has been worked out for Ising models [15,16]. We general-
ize this method in order to investigate the planar rotator
model. We write the Hamiltonian (2.1) in the following

way

H = −
1

2
µ2 N

L2

∑
ρσ

∑
n

∑
G6=0

fρσ(G)SρnS
σ
n+G

+
∑
n,n′

n 6=n′

∑
G

fρσ(n− n′ + G)SρnS
σ
n′+G

 (4.1)

where n, n′ label the sites of a square cell containing L×L
spins; G = m1Laûx+m2Laûy is a vector joining the spin
at site n with the spin at site n+G. We assume a periodic
arrangement of the cells that means Sn+G = Sn according
to reference [15]. Hamiltonian (4.1) becomes

H = −
1

2
µ2S2 N

L2

{
V0L

2

+
∑
n,n′

n 6=n′

[
V xx(n− n′) cos θn cos θn′

+ V yy(n− n′) sin θn sin θn′

+ V xy(n− n′) sin(θn + θn′)
]}

(4.2)

where ∑
G6=0

fρσ(G) = V0δρσ (4.3)

∑
G

fρσ(n− n′ + G) = V ρσ(n− n′) = V ρσ(n′ − n)

(4.4)

and θn is the angle the spin at site n makes with x axis. In
evaluating the sum over cells in (4.3) and (4.4) we find that
the convergence of the sums is obtained accounting for at
least 104 cells. In any case we have evaluated the sum for
4× 106 cells. The quantities V ρσ(n− n′) were calculated
for each couple n − n′ = nxûx + nyûy before starting
MC simulation. Since nx and ny can be positive as well
as negative we took advantage of the following identities
coming from the symmetry of the square lattice:

V xx(nx, ny) = V xx(−nx, ny) = V xx(nx,−ny)

= V xx(−nx,−ny)

V yy(nx, ny)=V xx(ny, nx)

V xy(nx, ny) = V xy(−nx,−ny) = −V xy(−nx, ny)

=−V xy(nx,−ny)

V xy(nx, ny)=V xy(ny, nx). (4.5)

In order to perform MC simulation we move a spin at site
n0 leaving all the remaining spins unchanged and we eval-
uate the energy cost comparing the energy of the system
after and before the move. The energy involved in a ran-
dom change of the angle of the generic spin Sn0 from θn0
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Fig. 5. Snapshot of 8×8 (a), 16×16 (b), 32×32 (c) samples at T = 0.1.

to θ′n0
is

∆E = −µ2S2
{

(cos θ′n0
− cos θn0)

×
∑

n 6=n0

[
V xx(n− n0) cos θn + V xy(n− n0) sin θn

]
+ (sin θ′n0

− sin θn0)

×
∑

n 6=n0

[
V yy(n−n0) sin θn+V xy(n−n0) cos θn

]}
.

(4.6)

MC simulation were performed using the traditional
Metropolis procedure: the thermal probability of a spin
move p = exp(−∆E/kBT ) is compared with a random
number z chosen between 0 and 1. The spin move is then

accepted if and only if z < p. Simulations were carried
out on square lattices of size L = 4 to L = 32 starting
from a random configuration and performing 105 equili-
bration MC steps. A MC step is defined, as usual, as se-
quentially stepping through the lattice moving each spin
once. Because of the long range nature of the interaction
the typical computing time required for a single MC step is
much longer than the time required for systems with near-
est neighbour exchange interaction. The time required to
perform 105 MC steps goes from 5 seconds for a L = 4
lattice up to 5 hours for a L = 32 lattice using a Silicon
Graphics Onix Infinite Reality2 machine.

We have pushed our MC simulation towards lower
temperatures with respect to previous simulations [11]
in order to get snapshots of the spin configurations with
less and less thermal noise. For small lattices (L = 4, 8)
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Fig. 6. Snapshot of 8×8 (a), 16×16 (b), 32×32 (c) samples at T = 0.4.

the results are strongly dependent on the initial random
configuration and on the number of thermalization steps.
This is because the spins experience all the states of the in-
finitely degenerate manifold. As L increases (L = 16, 32)
the state selected by MC simulation is the same as ex-
pected by analytic calculation (α = 0 or α = ±90◦).
Figures 5 show snapshots of samples with L = 8, 16, 32,
respectively, at T ≡ kBTa

3/µ2S2 = 0.1. Note that fi-
nite size effects are evident in cases a) and b), where the
infinite degeneracy of the ground state affects the aver-
age angles that the spins of the unit cell make with the
x axis. In case a) the average angles are α = −131.7◦,
β = 129.5◦, γ = 180◦ − 122.7◦, δ = 180◦ + 130◦. In case
b) they are α = 171.4◦, β = −171.5◦, γ = 180◦ + 170.1◦,
δ = 180◦ − 170.9◦. In case c) the results are independent
of the starting random configuration and of the number of
thermalization steps. The average angles are α = −90.5◦,

β = 90.3◦, γ = 180◦ − 90.8◦, δ = 180◦ + 90.8◦. The selec-
tion of α ' −90◦ agrees with the analytic result. A similar
behaviour is observed at T = 0.4 as shown in Figures 6.
Note that many domain-like defects occur as temperature
is increased.

We have evaluated by MC simulation specific heat

C =
〈H2〉 − 〈H〉2

NkBT 2
(4.7)

and staggered susceptibility

χst =
1

N

[
〈S2

st〉 − 〈Sst〉
2
]

(4.8)

where Sst =
∑
i eiQ·riSi is the staggered magnetization

and Q is the wave vector characterizing the order of the
columnar phase. Specific heat and staggered susceptibility
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Fig. 7. Specific heat as function of temperature for different
lattice sizes: L = 8 (open squares), L = 16 (full circles), L = 32
(diamonds).

are evaluated for lattices with L = 4, 8, 12, 16, 24, 32. All
calculations start from an ordered columnar spin configu-
ration at T = 0.1. The system is then heated up to T = 1.2
by steps of ∆T = 0.025. In Figures 7 and 8 we show the
specific heat and the staggered susceptibility, respectively,
obtained by MC simulation for lattices with L = 8, 16, 32.
As expected, the temperature of the maximum of specific
heat and staggered susceptibility is size dependent. In par-
ticular, the temperature at which the maximum of specific
heat occurs decreases as L increases. On the contrary the
temperature of the maximum of the staggered suscepti-
bility increases as L increases. As shown in Figure 9 the
size-dependent temperatures of the maxima converge to-
ward T = 0.75 in the thermodynamic limit, so that this
value may be assumed as the critical temperature of the
SQ planar model with dipolar interactions. This value is
in agreement with that obtained by MC evaluation of the
specific heat for a lattice with L = 40 [11]. Note that the
critical temperature of the planar model is much lower
than the critical temperature of the corresponding Ising
model with dipolar interactions T = 1.95 [16].

5 Summary and conclusions

The ground state of the SQ planar rotator model with
spins interacting via dipolar forces is characterized by
infinite isoenergetic configurations consisting of four sub-
lattice spin patterns [10]. The angle the spins of each sub-
lattice make with the x axis is α, -α, π + α, π − α, with
α arbitrary. On the other hand MC simulations [11] sup-
port the occurrence of columnar spin configurations cor-
responding to α = 0 or α = π/2. In order to test whether
this expectation is correct we have evaluated the elemen-
tary excitation energies which are found to depend on
α as shown in Figures 2 and 3. This fact implies that
the free energy is in its turn a function of α with min-
ima at α = 0 and α = π/2 as shown in Figure 4. Note
that the selection of one state occurs at finite tempera-
ture so that this model gives one more example of or-

Fig. 8. Staggered susceptibility as function of temperature
for different lattice sizes: L = 8 (open squares), L = 16 (full
circles), L = 32 (diamonds).

Fig. 9. Critical temperature as obtained by the maximum of
the specific heat (higher curve) and of the staggered suscepti-
bility (lower curve) as function of the lattice size.

der by thermal disorder. In addition our results may test
the nature of the spin-spin interactions in compounds like
RBa2Cu3O7 (where R is a rare earth). The spin ordering
observed in those compounds have been ascribed to dipo-
lar interactions [3,5]. MC simulation has been performed
on a SQ Ising model with dipolar interactions in order
to investigate thermal behaviour of ErBa2Cu3O7 [16].
The critical temperature of the model was found to be

TI = 1.95
(gyµBS)2

kBa3 . Inelastic neutron scattering data [17]

and crystal electric field (CEF) approximation allow the
evaluation of the anisotropic effective g-factor leading to
gx = 7.42, gy = 8.04, gz = 4.57 [6]. Substitution of gy
in the critical temperature obtained by MC simulation on
the Ising model gives TI = 0.38 K, somewhat below the ob-
served critical temperature Tc = 0.62 K [3,18]. It is clear
that the Ising model is a raw description of the localized
spins in ErBa2Cu3O7 because the y axis is certainly the
easy axis but CEF calculation leads to non vanishing val-
ues of gx and gz. A more realistic treatment based on the
planar model, for which gx = gy, gz = 0 provides a critical
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temperature TP = 0.75
(gyµBS)2

kBa3 leading to TP = 0.13 K
assuming gx ' gy = 8.04. The critical temperature ob-
tained from the planar model is even worse than the cor-
responding one obtained from the Ising model. Moreover,
we expect that taking gz into account, an even lower criti-
cal temperature should be obtained because of the out-of-
plane fluctuations, so that other kinds of interactions such
as exchange coupling and anisotropy have to be called for.

In conclusion we stress that the SQ planar model
with dipolar interaction exhibits interesting properties but
thermal behaviour of compounds like ErBa2Cu3O7 can
be explained only by accounting for anisotropies and ex-
change interactions [6] as well as dipolar interactions.
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